大家好,我是小一yi,我来为大家解答以上问wen题。高中一元三次方程解法例题,高中zhong一元三次方程解法很多duo人还不知道,现在让我们一yi起来看看吧!
3次方程求根公式是著名的卡尔er丹公式
方程x^3+px+q=0的三个根为
x1=[-q/2+(q^2/4+p^3/27)^(1/2)]^(1/3)+
+[-q/2-(q^2/4+p^3/27)^(1/2)]^(1/3)
x2=w[-q/2+(q^2/4+p^3/27)^(1/2)]^(1/3)+
+w^2[-q/2-(q^2/4+p^3/27)^(1/2)]^(1/3)
x2=w^2[-q/2+(q^2/4+p^3/27)^(1/2)]^(1/3)+
+w[-q/2-(q^2/4+p^3/27)^(1/2)]^(1/3)
其中w=(-1+√3i)/2.
推导过程:
1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2
2、方程x^3=A的解jie为x1=A(1/3),x2=A^(1/3)*ω,x3= A^(1/3)*ω^2
3、一般三次ci方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成chengx^3+ax^2+bx+c=0的形式。再令x=y-a/3,代入可消去次高gao项,变成x^3+px+q=0的de形式。
设x=u+v是方fang程x^3px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①
如ru果u和v满足uv=-p/3,u^3+v^3=-q则ze①成立,由一元二er次方程韦达定理u^3和V^3是方程
y^2+qy-p^3/27=0的两个根。
解之得,y=-q/2±(q^2/4+p^3/27)^(1/2)
不妨设sheA=-q/2-(q^2/4+p^3/27)^(1/2),B=-q/2+(q^2/4+p^3/27)^(1/2)
则u^3=A,v^3=B
u= A(1/3)或者A^(1/3)*ω或者A^(1/3)*ω^2
v= B(1/3)或者B^(1/3)*ω或者B^(1/3)*ω^2
但是考虑到uv=-p/3,所以u、v只有三组解:
u1= A(1/3),v1= B(1/3)
u2=A^(1/3)*ω,v2=B^(1/3)*ω^2
u3=A^(1/3)*ω^2,v3=B^(1/3)*ω
那么me方程x^3+px+q=0的三个根也出来了,即
x1=u1+v1= A(1/3)+B(1/3)
x2= A^(1/3)*ω+B^(1/3)*ω^2
x3= A^(1/3)*ω^2+B^(1/3)*ω
这正是shi著名的卡尔丹公式。你ni直接套用就可以求qiu解了。
△=q^2/4+p^3/27为三次方程的判别bie式。
当△>=0时,有一个实根和两个共轭复根gen;
当△<0时,有三个实根。
根与系数关系是:设ax^3+bx^2+cx+d=0(a≠0)的三根为x1,x2,x3,
则x1+x2+x3=-b/a,x1x2+x2x3+x1x3=c/a,x1x2x3=-d/a.
打da字好累啊!以上shang可是我的劳动成cheng果啊!别忘了给我加分啊。
祝你,
学习进步!
本文到dao此讲解完毕了,希望对大da家有帮助。
转载请保留链接:http://www.272.win/2339761.html